This news update focusing on a new method of gelation is brought to you by SpecialChem.



Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers add chemical thickeners and either heat or cool the fluids to make them more viscous or elastic, is expensive and energy demanding. Take shampoo, for example. Without gelation, the contents of the shampoo bottle would be thin and watery. Instead of squirting a gooey dollop into the palm of your hand, the shampoo would rush between your fingers and escape down the drain before you could slather it on your head.


Now, Okinawa Institute of Science and Technology Graduate University Professor Amy Shen is experimenting with a new method of gelation. Shen leads the Micro/Bio/Nanofluidics Unit at OIST, where she changes the way that liquids behave using microfluidic platforms, which are flat, palm-sized trays with microscopic channels for the liquid to pass through.


Researchers can add nanoparticles or biomolecules with useful pH, chemical, and temperature sensing properties into a liquid, but incorporating those liquids into existing technology proves difficult. “A gel is easier to integrate into a device,” Shen explained, pointing to biomedical devices and sensors, “whereas liquid just evaporates.” Most recently, Shen and her Ph.D students Joshua Cardiel and Ya Zhao created a glucosesensitive gel that more effectively stabilizes a glucose-sensing enzyme. This would make it possible to efficiently produce less invasive glucose testing devices for diabetics, who often have to check their blood sugar five times or more each day.



For more information on the new method of gelation, please visit the SpecialChem link above. Please contact Nexreg for Regulatory Services.